Gmres for Sequentially Multiple Nearby Systems

نویسندگان

  • K. GURU PRASAD
  • J. H. KANE
چکیده

An application of the Generalized Minimal Residual (GMRES) algorithm to the solution of sequentially multiple nearby systems of equations through the reuse of Krylov subspaces is presented. The main focus is on the case when only the right-hand side vector changes. However, the case in which both the matrix and the right-hand side change is also addressed. Applications of these formulations include nonlinear problems, Design Sensitivity Analysis, multiple load cases, and transient analyses. Examples are drawn from systems arising from the discretization of Boundary Integral Equations. Though there is no reason to expect that Krylov subspaces may e ectively be reused for unrelated right-hand sides (except in the trivial full-dimensional limit), recent experience suggests that reuse has broad practical applicability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Product Hybrid Block GMRES for Nonsymmetrical Linear Systems with Multiple Right-hand Sides

Recently, the complementary behavior of restarted GMRES has been studied. We observed that successive cycles of restarted block BGMRES (BGMRES(m,s)) can also complement one another harmoniously in reducing the iterative residual. In the present paper, this characterization of BGMRES(m,s) is exploited to form a hybrid block iterative scheme. In particular, a product hybrid block GMRES algorithm ...

متن کامل

Parallel Sparse Linear Algebra for Homotopy Methods

Globally convergent homotopy methods are used to solve difficult nonlinear systems of equations by tracking the zero curve of a homotopy map. Homotopy curve tracking involves solving a sequence of linear systems, which often vary greatly in difficulty. In this research, a popular iterative solution tool, GMRES(k), is adapted to deal with the sequence of such systems. The proposed adaptive strat...

متن کامل

ar X iv : 0 70 7 . 05 02 v 1 [ m at h - ph ] 3 J ul 2 00 7 DEFLATED GMRES FOR SYSTEMS WITH MULTIPLE SHIFTS AND MULTIPLE RIGHT - HAND SIDES

We consider solution of multiply shifted systems of nonsymmetric linear equations, possibly also with multiple right-hand sides. First, for a single right-hand side, the matrix is shifted by several multiples of the identity. Such problems arise in a number of applications, including lattice quantum chromodynamics where the matrices are complex and non-Hermitian. Some Krylov iterative methods s...

متن کامل

Deflated Gmres for Systems with Multiple Shifts and Multiple Right-hand Sides∗

We consider solution of multiply shifted systems of nonsymmetric linear equations, possibly also with multiple right-hand sides. First, for a single right-hand side, the matrix is shifted by several multiples of the identity. Such problems arise in a number of applications, including lattice quantum chromodynamics where the matrices are complex and non-Hermitian. Some Krylov iterative methods s...

متن کامل

A hybrid block GMRES method for nonsymmetric systems with multiple right-hand sides

The block GMRES (BGMRES) method is a natural generalization of the GMRES algorithm for solving large nonsymmetric systems with multiple right-hand sides. Unfortunately, its cost increases significantly per iteration, frequently rendering the method impractical. In this paper we propose a hybrid block GMRES method which offers significant performance improvements over BGMRES. This method uses th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995